
Highlighting System 4.3
User Guide

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 1 of 27

Table of Contents

1 Changelog ... 3
2 Upgrade notes ... 8

2.1 Upgrading from v1.0 to v2.0 ... 8
2.2 Upgrading from v2.0 to v3.0.x .. 8
2.3 Upgrading from v3.0.x to v4.x .. 9
2.4 Upgrading from v4.x to v4.3 .. 9

3 Overview .. 10
3.1 Package overview .. 10

4 Integration to your project ... 11
5 API .. 12

5.1 Highlighter API ... 12
5.2 HighlightingRenderer API .. 15

5.2.1 HighlightingRenderer Presets API .. 17
6 Important usage tips .. 19

6.1 Common tips .. 19
6.2 Using custom transparent shaders ... 20
6.5 Anti-aliasing .. 21

7 Limitations .. 23
8 Known issues ... 25
8 Support .. 26

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 2 of 27

1 Changelog

v4.3
• Virtual Reality Single Pass (Fast) Stereo Rendering Method is now supported
• Implemented support for highlighting geometry rendered with GPU instancing
• Static and Dynamic batching will no longer produce z-fighting artifacts under any

circumstances. Dynamic Offset and Factor options have been removed from the
HighlightingRenderer component

• Highlighting depth occlusion now works even if MSAA is enabled. This is no longer
necessary to manually add HighlighterOccluder components to GameObjects (use
HighlighterOccluder component only to achieve see-thorugh occluders). Non-see-
through occluders is now never rendered, so that saves performance

• Added API for runtime control of highlighting presets. Now they are stored in
HighlightingRenderer components (previously they were stored using Unity
EditorPrefs)

• Exposed Blur Directions settings for HighlightingRenderer component (options:
Diagonal, Straight, All) to allow finer control of solid highlighting modes

• Exposed Anti Aliasing settings for HighlightingRenderer component (options: Use
Value From Quality Settings, Disabled, 2x Multi Sampling, 4x Multi Sampling, 8x Multi
Sampling). That will define the state of anti-aliasing for the highlighting buffer

• Added forceRender option to the Highlighter (to make it ignore frustum culling and
occlusion culling)

• Improved cross-platform compatibility
• Fixed highlighting depth occlusion not working if Camera Clear Flags set to Depth

only or Don't clear in Forward or VertexLit rendering paths
• Fixed no longer used highlighting materials kept in memory (turns out Unity is

never releasing unreferenced materials without the Resources.UnloadUnusedAssets()
call, so explicit Destroy() call is required) (https://trello.com/c/st8b6YZ9)

• Fixed 'gray tint instead of highlighting' bug (https://trello.com/c/58fK9qqd)
• Fixed HighlightierRenderer.EndOfFrame generating garbage every frame

(https://trello.com/c/4lbbfKee)
• Fixed "WARNING: Shader Unsupported: 'Hidden/Highlighted/Blur' - Pass '' has no

fragment shader" or even “EXC_BAD_ACCESS” exception when running on iOS Metal
device (https://trello.com/c/yiDskT1i)

• Improved documentation

v4.2.1
• Fixed null reference exceptions if Highlighter has disabled GameObjects in hierarchy

v4.2
• Support for multiple cameras and different camera clear flags
• Support for LODGroup component
• Improved compatibility across all platforms

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 3 of 27

https://trello.com/c/yiDskT1i
https://trello.com/c/4lbbfKee
https://trello.com/c/58fK9qqd
https://trello.com/c/st8b6YZ9

• Proper culling of invisible highlighting renderers
• Implemented optional HighlightingBlitter for blitting highlighting results to the

screen using different camera
• Improved and refactored highlighting system core
• Implemented ability to dynamically change constant on/off transition times (no

more common constantOnSpeed/constantOffSpeed static properties - use
ConstantOn(float time) and ConstantOn(Color color, float time) instead)

• Disabling GameObjects with Highlighter components or Highlighter components
directly in Unity Editor properly affects highlighting (toggling them from scripts at
runtime works well as before)

• Fixed null reference exceptions after re-enabling HighlightingRenderer component
• Implemented HighlighterBlocker to prevent highlighting of specific objects in

hierarchy
• Optimized memory allocation in HighlighterInternal.GrabRenderers() method
• Exposed Highlighter.seeThrough property. SeeThrough(bool state), SeeThroughOn(),

SeeThroughOff(), SeeThroughSwitch() methods deprecated and will be removed in
the next version

• Exposed Highlighter.occluder property. OccluderOn(), OccluderOff(), OccluderSwitch()
methods deprecated and will be removed in the next version

• Compatibility with iOS Metal graphics API
• Fixed iOS build crash when stripping engine code is enabled in Unity 5.2.0+
• Windows Store Apps: fixed compilation error caused by inability to access C# classes

from Boo and JS scripts on WSA platforms (without checking .NET Core Partially in
Compilation Overrides in PlayerSettings)

• Reworked all demo scripts and scenes
• Highlighter item revealer example added
• Added new demo scenes: LODGroup, Revealer, RenderTexture, ViewportRect,

CustomBlitter, ClearFlags, FPSCamera1, FPSCamera2, Toggle, VR
• Changing properties of HighlighterInteractive, HighlighterConstant,

HighlighterFlashing and other highlighter components in Inspector affects
highlighting in realtime

• Other fixes and improvements

v4.1
• Implemented see-through mode for highlighting occluders (occluder in this mode

won't receive any highlighting on it's area)
• SpriteRenderers highlighting is now rendered from both sides. Makes highlighting

visible if used on sprites with negative scale (mirrored sprites)
• Fixed producing a lot of RenderTexture garbage (previously causing out of memory

issues on mobile devices)
• Fixed highlighting materials not being destroyed on loading scenes
• Fixed disabled / invisible renderers uninitialization
• Fixed improper highlighting offset on Android and iOS devices for solid highlighting

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 4 of 27

modes (when HighlightingRenderer Downsampling property set to None)
• Fixed improper highlighting when emulating OpenGL ES device (Android or iOS) in

Unity Editor on Windows
• Fixed improper highlighting on Xbox
• Fixed artifacts when used with bloom image effect
• Other minor fixes and improvements

v4.0
• Unity 5 compatibility
• Windows Phone 8 compatibility
• Highlighters now rendered via CommandBuffers. Simplified setup and usage – only

HighlightingRenderer component is required on Camera.
• Highlighters now culled on the CPU before rendering
• Ability to save custom highlighting Presets in editor (Presets shared between

projects)
• Added support for ParticleRenderer (Legacy) and ParticleSystemRenderer

highlighting
• Other improvements and performance optimizations

v3.0.1
• Fixed possible screen darkening when Color Space is set to Linear in Player Settings
• Improved documentation

v3.0
• In this version, highlighting occluders doesn't work with Sprites! This might be fixed

in the future releases of the Highlighting System, but you shouldn't upgrade in case
you heavily rely on this feature in your project

• Mobile optimizations (9 FPS vs 25 FPS on iPhone 4)
• Highlighting occlusion feature (highlighters is now occluded with scene objects

without the need to add highlighting occluders to all of them). Not compatible with
hardware anti-aliasing!

• Per-Highlighter see-through mode (controls when the highlighting should be always
visible)

• Hardware anti-aliasing (MSAA) support (highlighting buffer is now also anti-aliased.
RenderTexture anti-aliasing support was introduced in Unity 4.2)

• Support for nested highlighted objects (previously it was causing an error)
• Invisible highlighted objects culling (they will not be affected by the material

replacement routine. Scenes with huge amount of highlighted objects now should
work faster)

• Depth Offset Factor and Offset Units settings added to avoid visual artifacts when
Dynamic Batching is enabled in Player Settings

• Real stencil buffer is now used during highlighting buffer rendering (speeds up
rendering. Stencil buffer access was introduced in Unity 4.2)

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 5 of 27

http://unity3d.com/unity/whats-new/unity-4.2
http://unity3d.com/unity/whats-new/unity-4.2

• Fixed lightmapped objects highlighting
• _CameraDepthTexture / _CameraDepthNormalsTexture is no longer cleared when the

camera.depthTextureMode property is set to DepthTextureMode.Depth /
DepthTextureMode.DepthNormals

• RenderTexture restore operations avoided in most of the cases and “Tiled GPU perf.
warning" is suppressed in all other cases. Uncomment DEBUG_ENABLED define in
HighlightingBase.cs script to see when this happens

• Null reference exceptions now prevented in case highlighted GameObject or
Renderer was removed, but ReinitMaterials() wasn't called

• Fixed one empty pixel border around highlighted objects on a devices without
support for NPOT (non power of two) textures

• Fixed one texel vertical offset in Direct3D 9
• Coroutines, used in HighlightableObject (Highlighter) were replaced with simple

frame number comparision
• Combined highlighting shaders. Fixed function states (ZWrite, ZTest, etc.) is now

driven by the material parameters (feature was introduced in Unity 4.3)
• Events/delegates used to control HighlightableObject's (Highlighter's) state from

HighlightingEffect's (HighlightingRenderer / HighlightingMobile) were replaced with
Highlighter components management

• Added HighlightingSystem namespace (to avoid potential name conflicts)

v2.0
• Linear blending of the highlighting and frame buffers (gives correct highlighting

colors)
• All shaders are now compatible with the Highlighting System out of the box (no

need to adapt each custom shader anymore)
• Batching and shared materials support
• Correct highlighting of transparent materials
• Highlighting occluders
• Handy highlighting effect quality and intensity controls with Presets
• Effect inspector helpers (will help you correctly setup Highlighting System in your

project)
• Bug fixes, shaders optimizations and other performance improvements

v1.1
• Improved folder structure (highlighting scripts moved to Plugins folder). Now it's

possible to use Highlighting System from JavaScript and Boo (see
JSHighlightingController.js and BooHighlightingController.boo)

• Fix: Highlighting System now highlights only MeshRenderer, SkinnedMeshRenderer
and ClothRenderer components, because you probably don't want to see
highlighted meshes created by ParticleRenderer, ParticleSystemRenderer,
LineRenderer and TrailRenderer components

• Fix: Now you can use highlighting with Hardware Anti-Aliasing without having

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 6 of 27

http://unity3d.com/unity/whats-new/unity-4.3

highlights flipped, but Hardware AA smooths only framebuffer – outline glow will
remain aliased as it uses additional render buffers, so i recommend you to continue
using AntialiasingAsPostEffect.js for this

• Fix: Camera Clear Flags = Don't Clear doesn't cause flipping anymore
• Fix: Non-standard Camera normalized viewport rects now work correctly
• Fix: Highlighting doesn't affect alpha channel of framebuffer now

v1.0
• Initial release

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 7 of 27

2 Upgrade notes

2.1 Upgrading from v1.0 to v2.0

When upgrading Highlighting System in your projects, to not lose all HighlightableObject
and HighlightingEffect components references, please do the following:

1. Remove Highlighting.Init() calls from your code – this is not needed anymore.
2. Remove Highlighting.cs script from the Plugins\HighlightingSystem\Scripts folder.
3. Remove everything from your Plugins\HighlightingSystem\Resources folder (don't

worry – you don't have to adapt your custom shaders anymore).
4. Import upgraded package from the Unity Asset Store. In the Importing package

window click on All, then Import.
5. Choose one of the highlighting Preset on each HighlightingEffect component by

clicking on its button, or setup highlighting intensity and quality parameters by
hand.

6. May be you'll need to tune up highlighting colors, because now Highlighting
System displays actual highlighting colors given to the highlighting methods.

2.2 Upgrading from v2.0 to v3.0.x

1. Namespace HighlightingSystem has been added to avoid potential name conflicts
with your own code. Add these directives to your scripts if they are referenced to
any of the Highlighting System classes (you can find an example in
HighlightingSystemDemo\Scripts\Basic folder):

• for C# scripts: using HighlightingSystem;

• for UnityScript (JavaScript) scripts: import HighlightingSystem;

• for Boo scripts: import HighlightingSystem

2. HighlightableObject was renamed to Highlighter.

3. HighlightingEffect component has been split into two versions:

• HighlightingRenderer + HighlightingBlitter (to be used mainly for desktop
applications and in combination with other Image Effects, where precise control
over the point at which highlighting buffer will be applied to the generated
frame is required. See Integration to your project section for more info)

• HighlightingMobile (optimized version for mobile devices)

4. Refer to the highlighting occlusion section of this document to consider completely
removing manually added highlighting occluders from your project.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 8 of 27

2.3 Upgrading from v3.0.x to v4.x

1. HighlightingMobile and HighlightingBlitter components have been removed. Use
only HighlightingRenderer instead. It is no longer necessary to keep
HighlightingRenderer as a first Image Effect on Camera - order of this component
(among other Image Effects) defines the point at which highlighting will be applied
to the screen (this replaces removed HighlightingBlitter component functionality).

2.4 Upgrading from v4.x to v4.3

1. Highlighting presets now stored locally, in each instance of the HighlightingRenderer
component using Unity's native serialization system (previously they were stored
globally using EditorPrefs, under the “HighlightingSystem.Presets” key). See
HighlightingRenderer Presets API for more info. Presets made in previous versions
of the Highlighting System will be lost after upgrading, so make sure to remember
their parameters in order to recreate them after upgrading.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 9 of 27

3 Overview

Highlighting System package allows you to easily integrate outline glow effect for objects
highlighting in your Unity project. It allows you to make any object highlightable and
works on all major platforms, where Image Effects is supported.

3.1 Package overview

After the package installation, inside of the Plugins\HighlightingSystem folder you will find
all the scripts and shaders required for the Highlighting System to work. There's also a
bunch of Editor scripts in the Plugins\HighlightingSystem\Editor folder, intended to simplify
workflow with the Highlighting System components.

Inside of the HighlightingSystemDemo folder, you will find example scenes and scripts
intended to demonstrate how to integrate and use Highlighting System in your own
projects. Feel free to completely remove this folder at any time.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 10 of 27

4 Integration to your project

1. Import Highlighting System package from the Unity Asset Store to your project.
2. Add HighlightingRenderer component to the Camera. Order of this component

(among other Image Effects on this Camera) defines the point at which highlighting
buffer will be applied to the rendered frame.

3. To be able to access Highlighting System API from your own scripts – add 'using
HighlightingSystem;' directive to the beginning of your script.

4. Add Highlighter component to the objects you want to make highlightable or do so
at runtime using gameObject.AddComponent<Highlighter>() call (see the
HighlightingSystemDemo\Scenes\06 Scripting demo scene for an example).

5. At runtime, use Highlighter API to control the state of highlighting on a specific
object.

6. Tweak settings on the HighlightingRenderer component to change the look of
highlighting. Please note that highlighting presets stored in the component itself, so
you can manipulate them at runtime using HighlightingRenderer Presets API.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 11 of 27

5 API

5.1 Highlighter API

Four different highlighting modes available (listed in priority order):
1. Once

Highlights object only for a single frame, so you can call it every frame for the
object under the mouse cursor.

2. Flashing
Useful to pay attention on a specific object (game tutorial item for example).

3. Constant
Used to turn on/off constant highlighting on an object (for example, to highlight all
pickable items on screen).

4. Occluder
Object in this mode will become highlighting occluder. Actually, this is not the
highlighting mode, but it will take effect only in case all other highlighting modes
disabled and only if seeThrough flag is set (see below).

In case multiple highlighting modes enabled on the highlighter - mode with higher priority
will take effect.

Use following methods and properties of the Highlighter components to control
highlighting on a specific object:

• bool seeThrough
See-through mode for highlighters or occluders. When set to true - highlighter in
this mode will not be occluded by anything (except for see-through occluders).
Occluder in this mode will overlap any highlighting.

• bool occluder
Occluder mode. Use only in combination with seeThrough to turn object into see-
thorugh occluder (the one which always occludes any highlighting over it's shape,
see the '05 OccluderModes' demo scene for an example). Has no effect if
seeThrough is disabled.

• bool forceRender
Enables force-rendering mode. When rendering highlighting for this highlighter
instance - no frustum culling or occlusion culling will be performed for it's renderers
(though frustum clipping still takes place, since near and far frustum plane define
depth buffer range in world space) and renderers from all LOD levels will be always

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 12 of 27

rendered for all cameras (only for the highlighting – that doesn't affect regular
object rendering in any way). Please be considerate in enabling this mode, or you
may experience performance degradation.

• void ReinitMaterials()
Reinitialize GameObject renderers and materials. Call this method before or after
your highlightable object has changed (added and/or removed) it's child objects or
any materials and/or shaders (for example, when your game character has switched
it's weapon). Feel free to call this method multiple times in a single update -
reinitialization will occur only once at the rendering stage.

• void OnParams(Color color)
Set color for one-frame highlighting mode.

• void On()
Turn on highlighting only in current frame.

• void On(Color color)
Turn on highlighting only in current frame using specified color.

• void FlashingParams(Color color1, Color color2, float freq)
Set flashing mode parameters – colors and frequency.

• void FlashingOn()
Turn on flashing.

• void FlashingOn(Color color1, Color color2)
Turn on flashing from given color1 to color2.

• void FlashingOn(Color color1, Color color2, float freq)
Turn on flashing from given color1 to color2 with specified frequency.

• void FlashingOn(float f)
Turn on flashing with specified frequency.

• void FlashingOff()
Turn off flashing.

• void FlashingSwitch()
Switch flashing mode.

• void ConstantParams(Color color)
Set constant highlighting color.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 13 of 27

• void ConstantOn(float time)
Fade in constant highlighting using specified transition duration.

• void ConstantOn(Color color, float time)
Fade in constant highlighting using specified color and transition duration.

• void ConstantOff(float time)
Fade out constant highlighting using specified transition duration.

• void ConstantSwitch(float time)
Switch constant highlighting using specified transition duration.

• void ConstantOnImmediate()
Turn on constant highlighting immediately (without fade in).

• void ConstantOnImmediate(Color color)
Turn on constant highlighting with given color immediately (without fade in).

• void ConstantOffImmediate()
Turn off constant highlighting immediately (without fade out).

• void ConstantSwitchImmediate()
Switch constant highlighting immediately (without fade in/out).

• void Off()
Turn off all highlighting modes.

• void Die()
Destroy the Highlighter component. Call this when you've done using highlighting
on this object (for example, when character entered dying sequence).

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 14 of 27

5.2 HighlightingRenderer API

• bool isSupported
Returns true if Highlighting System is supported on the current platform. Internally
this checks for SystemInfo.supportsImageEffects,
SystemInfo.SupportsRenderTextureFormat(RenderTextureFormat.ARGB32) and
isSupported value for all highlighting shaders.

• AntiAliasing antiAliasing
Anti-aliasing value for highlightingBuffer (options: QualitySettings, Disabled, MSAA2x,
MSAA4x, MSAA8x). Set to AntiAliasing.QualitySettings by default (will use value from
QualitySettings.antiAliasing in that case).

• HighlightingBlitter blitter
Get or set HighlightingBlitter instance, which will be used to blit highlighting
rendering results. Set to null to make HighlighterRenderer blit during the
OnRenderImage(RenderTexture src, RenderTexture dst) callback (default behaviour for
most Image Effects in Unity).

• void Blit(RenderTexture src, RenderTexture dst)
Compose highlightingBuffer with src RenderTexture and output result to the dst
RenderTexture. To be used only in custom scripts derived from HighlightingRenderer
component to explicitly control highlighting blit. Make sure to also override
OnRenderImage method. Please note that highlightingBuffer will be updated for the
current frame only during the BeforeImageEffectsOpaque camera event, so calling
this method earlier will probably lead to undesired results.

• BlurDirections blurDirections
Defines directions in which highlighting buffer will be shifted/blurred (options:
Diagonal, Straight, All. Default is Diagonal). This option allows finer control of solid
highlighting modes. All Directions is more expensive than Diagonal Directions or
Straight Directions:

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 15 of 27

https://docs.unity3d.com/ScriptReference/Rendering.CameraEvent.html

• float blurIntensity
Highlighting intensity. Internally defines the value by which highlighting buffer alpha
channel will be multiplied after each blur iteration.

• float blurMinSpread
Blur Min Spread. Lower values give better looking blur, but require more iterations
to get large blurs. Pixel offset for each blur iteration is calculated as blurMinSpread
+ blurSpread * Iteration Index. Usually, the sum of blurMinSpread and blurSpread lies
between 0.5 and 1.0.

• float blurSpread
Blur Spread. Lower values give better looking blur, but require more iterations to get
large blurs. Pixel offset for each blur iteration is calculated as blurMinSpread +
blurSpread * Iteration Index. Usually, the sum of blurMinSpread and blurSpread lies
between 0.5 and 1.0.

• int downsampleFactor
Highlighting buffer downsampling factor. Allowed values are 1 (No downsampling),
2 (Half), 4 (Quarter). Internally defines the size of highlighting buffer by dividing
frame buffer (screen) size with this value.

• int iterations
Blur iterations. Number of blur iterations to be performed on the highlighting buffer.
Larger number means more blur.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 16 of 27

5.2.1 HighlightingRenderer Presets API
Highlighting presets stored locally, in each instance of the HighlightingRenderer
component using Unity native serialization system. That means they are saved along with
prefabs and/or scenes. Applying HighlightingPreset affects the following settings of the
HighlightingRenderer: downsampleFactor, iterations, blurMinSpread, blurSpread,
blurIntensity, blurDirections. To reset to default, copy and paste presets between instances
of the HighlightingRenderer components or between projects – please use Reset, Copy
Component and Paste Component Values context menu options correspondingly (you can
access them by clicking on a little gear icon to the right):

Please use the following API to access and manipulate HighlightingRenderer presets at
runtime:

• ReadOnlyCollection<HighlightingPreset> presets
Returns stored presets as ReadOnlyCollection<HighlightingPreset> (collection class
is defined in System.Collections.ObjectModel namespace)

• bool GetPreset(string name, out HighlightingPreset preset)
Get stored preset by name. Returns true if preset with this name has been found in
the list of stored presets.

• bool AddPreset(HighlightingPreset preset, bool overwrite)
Add (store) preset. Returns false if preset with this name already exists and overwrite
flag is not set. Returns true otherwise.

• bool RemovePreset(string name)
Find stored preset by name and remove it. Returns true if preset with this name has
been found and removed. Returns false otherwise.

• bool LoadPreset(string name)
Find stored preset by name and apply it's settings.

• void ApplyPreset(HighlightingPreset preset)
Apply specified preset settings.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 17 of 27

• void ClearPresets()
Clear all stored presets.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 18 of 27

6 Important usage tips

6.1 Common tips

• On mobile platforms, don't forget to set the Use 32-bit Display Buffer checkbox
under the Resolution and Presentation section of the Unity's Player Settings.

• When configuring your HighlightingRenderer component - increasing blur iterations
will help you to improve outline glow quality, but try to keep this value as low as
possible for better performance.

• Any renderer component derived from Unity built-in Renderer class can be
highlighted. By default - highlighting of the following renderers is enabled:
MeshRenderer, SkinnedMeshRenderer, SpriteRenderer, ParticleSystemRenderer. Feel
free to tune types list in the Highlighter.cs script as you need.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 19 of 27

6.2 Using custom transparent shaders

In order to make custom transparent shaders properly highlightable:
1. Make sure that RenderType shader tag is set to TransparentCutout or Transparent

(check this for more info). Otherwise – such shader will be interpreted by the
Highlighting System as an opaque shader, and alpha channel of your material's main
texture will not be taken into account.

2. Make sure that your custom shader has _MainTex property of type 2D (Texture).
Highlighting System will use texture assigned to this property to detect transparent
areas by comparing texture alpha channel with threshold value, taken from:
• _Cutoff (Float) property if your custom shader has it, or
• Highlighter's internal transparentCutoff variable otherwise (set to 0.5 by default.

You can change this value in the HighlighterRenderer.cs script).

Note that the main texture with its offset and scale values is cached by the Highlighting
System only on highlighter's initialization, which takes place after instantiating Highlighter
component and after each call to ReinitMaterials(). Because of that, your changes to the
main texture properties will not be reflected by the highlighting without the call to
ReinitMaterials() method.
Also, please note that if your shader handles _Cutoff property differently (not with the
default alpha clip clip(alpha - _Cutoff) expression) – the resulting higlighting may differ
from what's rendered by your custom shader.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 20 of 27

https://docs.unity3d.com/Manual/SL-Properties.html
http://docs.unity3d.com/Manual/SL-ShaderReplacement.html

6.5 Anti-aliasing

Hardware anti-aliasing (or MSAA, Multi-Sample Anti-Aliasing) is enabled in Unity if Anti
Aliasing property is not set to Disabled in Edit > Project Settings > Quality settings. Note
that there are multiple quality levels all with their own anti-aliasing settings.

Hardware anti-aliasing has several significant drawbacks:

• It is not compatible with Legacy Deferred Lighting and Deferred Shading rendering
paths

• It is not compatible with HDR rendering

• There is no way in Unity to access and use non-MSAA-resolved
_CameraDepthTexture in Image Effects. So if you enable anti-aliasing for the
highlighting buffer - imprecisions between anti-aliased color buffer and non-anti-
aliased depth texture will produce rendering artifacts (as seen on the left side of this
image):

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 21 of 27

http://docs.unity3d.com/Manual/HDR.html
http://docs.unity3d.com/Manual/RenderTech-DeferredShading.html
http://docs.unity3d.com/Manual/RenderTech-DeferredLighting.html

Same issue affects shadows rendering in Unity, so it seems there is currently no way
to fix that:

Due to all of the above – it is not recommended to use hardware anti-aliasing in your
project. You can replace it with Antialiasing Image Effect from the Unity Standard Assets
package.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 22 of 27

https://www.assetstore.unity3d.com/en/#!/content/32351

7 Limitations

Due to the Image Effect nature of the Highlighting System – it has several limitations:

1. Multi-layer highlighting. This isn't possible to show highlighting of an object which
is obscured by other highlighted object.

2. Inverse highlighting occlusion (highlight only parts obscured by other objects).

Despite the fact that this can be implemented for simple convex geometry such as
this shown on the image above – complex arbitrary meshes will occlude their own
parts, so they will become highlighted:

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 23 of 27

3. Mixing HighlightingRenderer settings.

This isn't possible to use different highlighting settings on a per-object basis.
HighlightingRenderer settings always apply to the whole image only.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 24 of 27

8 Known issues

1. For VR, it is not possible to render highlighting with one Camera and blit (using
HighlightingBlitter) with another Camera. Highlighting buffer rendered for the left
eye is overwritten with right eye highlighting rendering results. Currently (in Unity
5.5.0f3) no API is exposed to properly support MultiPass, SinglePass and Instancing
stereo rendering paths in Image Effects. Specifically - all non-temporary
renderTextures should be (in accordance to this document):

◦ MultiPass - duplicated (one RenderTexture for each eye)

◦ SinglePass - turned into double-wide RenderTextures

◦ Instancing - turned into RenderTexture array (RenderTexture.dimension =
TextureDimension.Tex2DArray)

But there is no way to check at runtime which stereo rendering path is currently
active, and even the StereoRenderingPath enum is only in UnityEditor namespace, so
it cannot be used outside of the Editor.

2. Unity Editor may hang or crash on high-resolution displays (such as Retina®
displays used in MacBook®) when hardware anti-aliasing is enabled. Hardware anti-
aliasing option (enabled by default for new Unity projects) basically acts as a
multiplier for your game view resolution, so in case you're experiencing this issue –
you are probably running out of video memory and/or exceeding maximum allowed
RenderTexture size. To fix this - either disable hardware anti-aliasing in Quality
Settings or reduce your game view screen resolution using Aspect Drop-down.

3. Highlighting doesn't work properly on iOS platform if hardware anti-aliasing is
enabled. There is a very low chance that someone needs this considering the device
screen DPI and performance drop that comes from enabling this option on a mobile
device.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 25 of 27

http://docs.unity3d.com/Manual/GameView.html
http://docs.unity3d.com/Manual/class-QualitySettings.html
http://docs.unity3d.com/Manual/class-QualitySettings.html
https://trello.com/c/3VZtewR9/104-investigate-and-fix-hanging-on-mac
https://docs.unity3d.com/550/Documentation/ScriptReference/StereoRenderingPath.html

8 Support

Here you can find Highlighting System development board which you can use to check if a
specific bug fix or a feature is already known or in development:
https://trello.com/b/GmwO3VNJ

New hot fixes and tips are always posted here: https://trello.com/c/lTRmC9Yv

Please feel free to send your bug reports, feedback, suggestions, questions or feature
requests to: support@deepdreamgames.com
In order to help me resolve your issue faster – please make sure to provide the following
information in your email:

1. Invoice number in case you're asking for support for the first time. This isn't 100%
necessary, but I'm prioritizing emails from users with known invoice numbers, since
that allows me to instantly send them modified scripts and/or shaders of the
Highlighting System, or even the whole package as soon as I have a solution for any
particular issue. You can find your invoice number in the PDF attached to the 'Unity
Asset Store purchase confirmation' email here:

2. Unity version
3. Highlighting System version (v4.3 in case this Documentation is provided to you

along with the package)
4. Operating system version (e.g. Windows 10 64-bit)
5. Graphics card model (e.g. NVIDIA GeForce GTX 980)
6. Mobile device version in case of mobile-related issues (please find your device on

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 26 of 27

mailto:support@deepdreamgames.com
https://trello.com/c/lTRmC9Yv
https://trello.com/b/GmwO3VNJ

http://www.gsmarena.com/ and include the link. For example:
http://www.gsmarena.com/asus_zenfone_3_ze552kl-8106.php)

7. (Optional) Screenshots or videos depicting the problem. This is optional, but often 1
screenshot worth 1000 words ;)

8. (Optional) Archived example project to reproduce your issue (either attached to
email if it's below 20Mb, or a link to any file sharing service). Please note that this is
not necessary to include the Library folder (only Assets and ProjectSettings is
required).

Highlighting System are Copyright © 2017 Deep Dream Games. Unity, Unity Asset
Store are Copyright © 2017 Unity Technologies. Microsoft, Xbox, and Windows are
either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. MacBook, iOS, Retina are trademarks of Apple Inc.,
registered in the U.S. and other countries. NVIDIA, GeForce, GeForce GTX are
trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and/or
other countries.

Highlighting System 4.3 User Guide © 2012-2017 Deep Dream Games – Page 27 of 27

http://www.gsmarena.com/asus_zenfone_3_ze552kl-8106.php
http://www.gsmarena.com/

	Table of Contents
	1 Changelog
	2 Upgrade notes
	2.1 Upgrading from v1.0 to v2.0
	2.2 Upgrading from v2.0 to v3.0.x
	2.3 Upgrading from v3.0.x to v4.x
	2.4 Upgrading from v4.x to v4.3

	3 Overview
	3.1 Package overview

	4 Integration to your project
	5 API
	5.1 Highlighter API
	5.2 HighlightingRenderer API
	5.2.1 HighlightingRenderer Presets API

	6 Important usage tips
	6.1 Common tips
	6.2 Using custom transparent shaders
	6.5 Anti-aliasing

	7 Limitations
	8 Known issues
	8 Support

